

An international intercomparison and benchmarking of crop and pasture models simulating GHG emissions and C sequestration

Ehrhardt Fiona¹, Soussana Jean-François¹, Grace Peter², Recous Sylvie³, Snow Val⁴, Bellocchi Gianni⁵, Beautrais Josef⁶, Easter Mark⁷, Liebig Mark⁸, Smith Pete⁹, Celso Aita¹⁰, Bhatia Arti¹¹, Brilli Lorenzo¹², Conant Rich⁷, Deligios Paola¹³, Doltra Jordi¹⁴, Farina Roberta¹⁵, Fitton Nuala⁹, Grant Brian¹⁶, Harrison Matthew¹⁷, Kirschbaum Miko¹⁸, Klumpp Katja⁵, Léonard Joël¹⁹, Lieffering Mark⁶, Martin Raphaël⁵, Massad Raia Sylvia²⁰, Meier Elizabeth²¹, Merbold Lutz²², Moore Andrew²¹, Mula Laura¹³, Newton Paul²¹, Pattey Elizabeth¹⁶, Rees Bob²³, Sharp Joanna²⁴, Shcherback Iurii², Smith Ward¹⁶, Topp Kairsty²³, Wu Lianhai²⁵, Zhang Wen²⁶

Institutions involved: INRA, France; Queensland University of Technology, Australia; AgResearch, New Zealand; NREL, Colorado State University, USA; USDA Agricultural Research Service, USA; University of Aberdeen, UK; Federal University of Santa Maria, Brazil; Indian Agricultural Research Institute, India; University of Florence, Italy; University of Sassari, Italy; Cantabria Agricultural Research and Training Centre, Spain; Research Centre for the Soil-Plant System, Italia; Agriculture and Agri-Food Canada, Canada; Tasmanian institute of Agriculture, Australia; Landcare Research, New Zealand; CSIRO, Australia; ETH Zurich, Switzerland; SRUC Edinburgh Campus, UK; New Zealand Institute for Plant & Food Research, New Zealand; Department of Sustainable Soil Science and Grassland System, Rothamsted Research, UK; Institute of Atmospheric Physics, China.

Montpellier March 16-18, 2015

Session I 3.1 Climate adaptation and mitigation services

International & collaborative work

under the umbrella of the Soil C&N cycling cross-cutting group of the Global Research Alliance

- 4 FACCE JPI projects : CN-MIP, Models4Pastures, Comet-Global, MAGGNET
- 15 contributing countries

2015

 >40 people involved: modelers, site data providers, coordinators, statisticians, project holders

statisticians, project

The challenge of benchmarking & intercomparison

Why benchmark and inter-compare models?

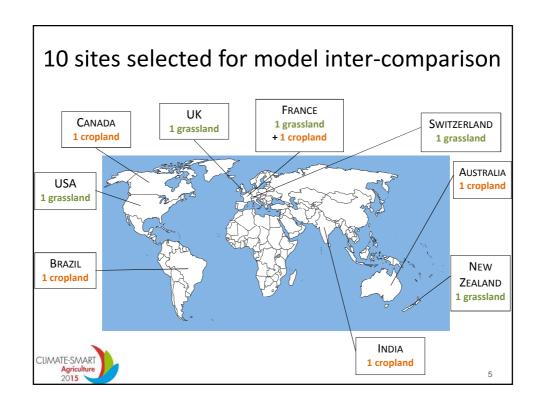
- Evaluate model performance against others and against data
- Examine where a model fails and why other models do better improve the model; where all models fail drive new science
- Test robustness of models on various geographic & pedoclimatic areas

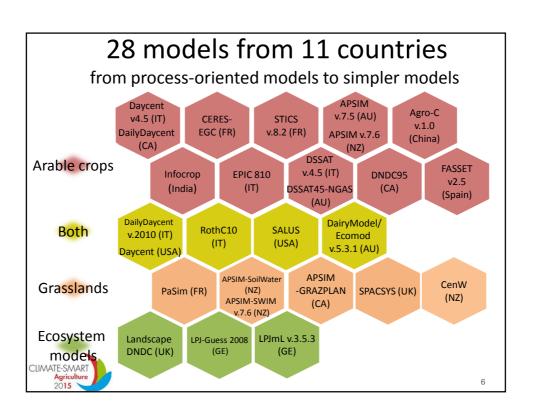
How to proceed?

- Test model simulation against independent experimental site data
 - First, without site specific calibration
 - Then, with improved calibration

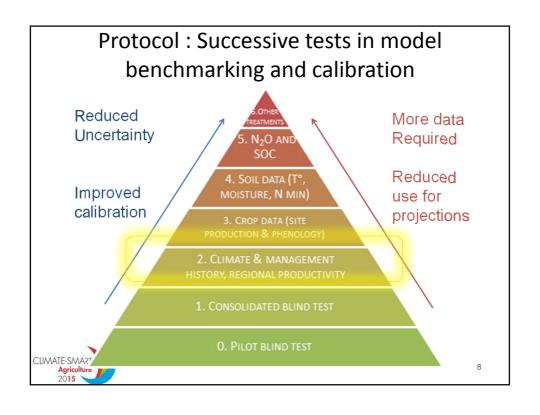
And then?

- Improve model performance on future predictions
- Establish guide users on which model to use for which purpose
- Set standards for new models to meet




Main criteria for site selection

- → Experimental site (grassland or crop including wheat)
- → General site description, climate, soil, vegetation/ species/ cultivar, management & site history
- → Published paper
- → Daily climate data covering at least 3 complete years
- → Frequent GHG measurements (ideally with flux towers), soil C stock change and yield



Protocol: inter-compared variables		
Production	Arable crop production: Grain yield Grassland production: intake or yield	(kg DM m ⁻² crop ⁻¹) (kg DM m ⁻² d ⁻¹)
VEGETATION	Leaf Area Index Above-ground Net Primary Production Below-ground Net Primary Production	(m ² .m ⁻²) (kg DM m ⁻² d ⁻¹) (kg DM m ⁻² d ⁻¹)
CARBON	Gross Primary Production Net Primary Production Ecosystem Respiration Change in total soil organic carbon stock	(kg C m ⁻² d ⁻¹) (kg C m ⁻² d ⁻¹) (kg C m ⁻² d ⁻¹) (kg C m ⁻² yr ⁻¹)
Nitrogen	N ₂ O emissions Change in total soil organic nitrogen	(μg N-N ₂ O m ⁻² d ⁻¹) (g N m ⁻² yr ⁻¹)
SPECIFIC FOR PASTURES	Enteric CH ₄ CH ₄ emissions Nitrate leaching through soil profile Ammonia volatilization from soil	(g C-CH ₄ m ⁻² d ⁻¹) (g C-CH ₄ m ⁻² d ⁻¹) (µg N-NO ₃ m ⁻² d ⁻¹) (µg N-NH ₃ m ⁻² d ⁻¹)
E-SMART griculture		

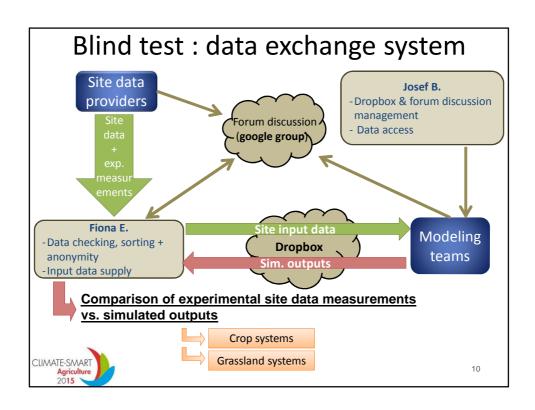
Blind test: initial site inputs data

• Site description

country, latitude N, elevation, slope, aspect, albedo, field area

Climate

daily precipitation, temperature, solar radiation wind speed, vapor pressure, $\mathrm{NH3}_{\mathrm{atm}}$ $\mathrm{CO2}_{\mathrm{atm}}$


Soil initial data for each layer

depth, physicochemical description

- Management: cropland; grassland cultivar, crop history, tillage, crop residues; grazing/mowing management
- Grassland vegetation description
- Fertilization dates and types
- Irrigation

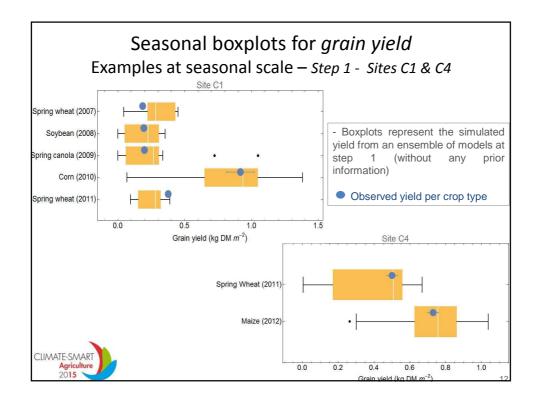
CLIMATE-SMART
Agriculture

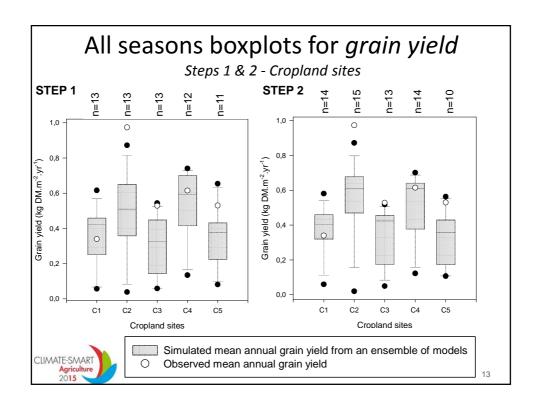
9

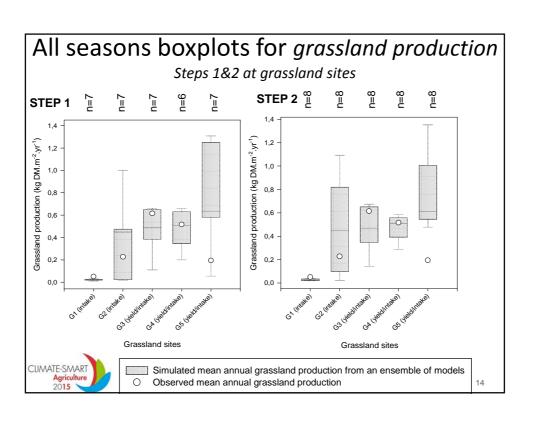
How to compare observed vs. simulated data?

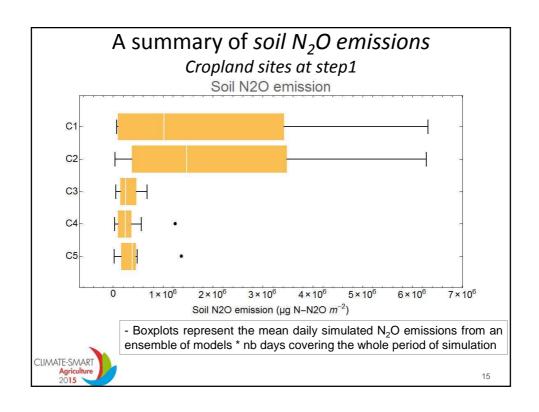
Performance against the metrics

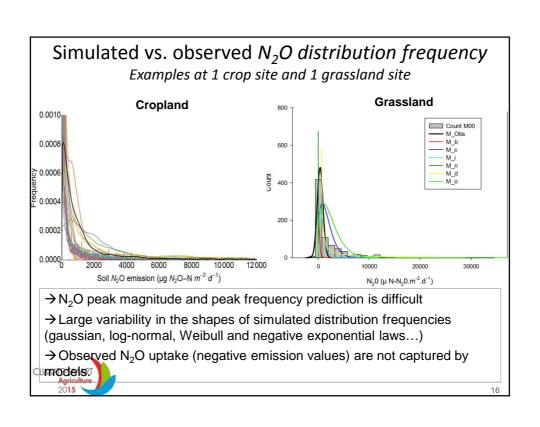
- R², Coefficient of determination
- d, index of agreement
- RRMSE, Relative root mean square error
- EF, Modelling efficiency
- P(t), Paired Student t-test probability of means being equal


Analysis


- · Visualizing model performance
 - Line plots of measured against modelled data
 - Boxplots
- Data aggregation
 - All seasons in one site.
 - Sites.




- Seasons with particular crop across all sites.


11

Take home messages

- → Largest benchmarking exercise on grassland and crop systems for GHG emissions and removals;
- → Gradual calibration : *Blind:* step1 ; *model initialization* : step2 ; *model calibration*: steps 3, 4, 5 ;
- → Improvement of site specific predictions and ultimately models performance
- → Production of *guide users* on which model to use for which purpose
- → Set standards for new models to meet
- → Test *mitigation options* as a final goal on both gas emissions and food production.

17

See also poster (n°21) on

Grassland production and GHG sensitivity to climate change with an exercise adapted from the Coordinated Climate-Crop Modeling Project (C3MP, AgMIP)

Sensitivity analysis for climate change impacts, adaptation & mitigation projection with pasture models.

Bellocchi Giannii, Ehrhardt Flona², Conant Rich², Fitton Nuala³, Harrison Matthew⁵, Lieffering Mark⁶, Minet Julien⁷, Martin Raphaël¹, Moore Andrew⁸, Myrgiotis Vasileios⁹, Rolinski Susanne¹⁰, Ruget Françoise¹¹, Snow Val¹², Wang Hong¹³, Wu Lianhal¹⁴, Ruane Alex¹⁵, Soussana Jean-François².

¹ INRA, Grassland Ecosystem Research (URR²A), Clermont Ferrand, France; ² INRA, Paris, France; ³ NREL, Colorado State University, Fort Collins, USA; ⁴ Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland, UK; ⁵ Tasmanian Institute of Agriculture, Burnie, Australia; ⁸ Saggreenth Grasslands (Pashasatan Marth. Martin Tashasatan Marth. Martin Tashasa

Thank you for your attention

Visit our webpage:

http://www.globalresearchalliance.org/research /soil-carbon-nitrogen-cycling-cross-cuttinggroup/

Contacts:

<u>Jean-Francois.Soussana@paris.inra.fr</u> <u>fiona.ehrhardt@paris.inra.fr</u>

